(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
sum(s(x)) →+ +(sum(x), s(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sum(0') → 0'
sum(s(x)) → +'(sum(x), s(x))
sum1(0') → 0'
sum1(s(x)) → s(+'(sum1(x), +'(x, x)))
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
+'/1
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sum(0') → 0'
sum(s(x)) → +'(sum(x))
sum1(0') → 0'
sum1(s(x)) → s(+'(sum1(x)))
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
sum(0') → 0'
sum(s(x)) → +'(sum(x))
sum1(0') → 0'
sum1(s(x)) → s(+'(sum1(x)))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
sum1 :: 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sum, sum1
(10) Obligation:
TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sum(
x))
sum1(
0') →
0'sum1(
s(
x)) →
s(
+'(
sum1(
x)))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
sum1 :: 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
sum, sum1
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sum(
gen_0':s:+'2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
sum(gen_0':s:+'2_0(+(1, 0)))
Induction Step:
sum(gen_0':s:+'2_0(+(1, +(n4_0, 1)))) →RΩ(1)
+'(sum(gen_0':s:+'2_0(+(1, n4_0)))) →IH
+'(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sum(
x))
sum1(
0') →
0'sum1(
s(
x)) →
s(
+'(
sum1(
x)))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
sum1 :: 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
sum(gen_0':s:+'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
sum1
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sum1(
gen_0':s:+'2_0(
+(
1,
n819_0))) →
*3_0, rt ∈ Ω(n819
0)
Induction Base:
sum1(gen_0':s:+'2_0(+(1, 0)))
Induction Step:
sum1(gen_0':s:+'2_0(+(1, +(n819_0, 1)))) →RΩ(1)
s(+'(sum1(gen_0':s:+'2_0(+(1, n819_0))))) →IH
s(+'(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sum(
x))
sum1(
0') →
0'sum1(
s(
x)) →
s(
+'(
sum1(
x)))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
sum1 :: 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
sum(gen_0':s:+'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
sum1(gen_0':s:+'2_0(+(1, n819_0))) → *3_0, rt ∈ Ω(n8190)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_0':s:+'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sum(
x))
sum1(
0') →
0'sum1(
s(
x)) →
s(
+'(
sum1(
x)))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
sum1 :: 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
sum(gen_0':s:+'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
sum1(gen_0':s:+'2_0(+(1, n819_0))) → *3_0, rt ∈ Ω(n8190)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_0':s:+'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
sum(
0') →
0'sum(
s(
x)) →
+'(
sum(
x))
sum1(
0') →
0'sum1(
s(
x)) →
s(
+'(
sum1(
x)))
Types:
sum :: 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+'
sum1 :: 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
sum(gen_0':s:+'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sum(gen_0':s:+'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(24) BOUNDS(n^1, INF)